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Abstract

A dealiasing study of the high dimensional harmonic balance method is conducted using a Duffing oscillator as a

prototypical nonlinear dynamical system. Previous study has shown that aliasing can occur when the high dimensional

harmonic balance method is used to solve systems that contain nonlinearities. We demonstrate that frequency filtering

techniques, such as the Fourier smoothing method, can sufficiently reduce or eliminate the effects of aliasing. The

drawback is that Fourier filtering requires redundant coordinate transformations between the time and frequency domains,

resulting in unnecessary computational expense. As an alternative, temporal filters are constructed based upon compact

finite difference schemes with spectral-like resolution. It is shown that the temporal filtering schemes successfully replicate

the performance of the Fourier smoothing method with improved computational economy.

r 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The harmonic balance (HB) method is a computationally efficient approach for modeling nonlinear
dynamical systems that have time-periodic solutions. Duffing’s oscillator is an excellent prototype for such a
system. A more complex example of a nonlinear dynamical system may involve a strong coupling between a
structure and a fluid, otherwise known as a fluid–structure interaction problem. Time-periodic phenomena
such as flutter, limit cycle oscillation, and buffet are of great importance in fluid–structure interaction
problems and are most often studied. Another problem which has gathered recent attention due to the current
emphasis on developing new micro aerial vehicle (MAV) technology is the aeroelastic response of flapping
wings. While these problems are ultimately of great interest, the computational fluid and structural dynamics
techniques that are commonly used to solve them contain too many dof to accommodate a general study of
the HB method. Thus, it is more practical to channel the study of the HB methodology through a more
manageable system, such as a Duffing oscillator. This is the approach that we will take in this work.

The classical HB approach involves substituting a temporal Fourier series expansion of the solution
variables into the governing equations. The resulting equations are then expanded, and the terms associated
ee front matter r 2009 Elsevier Ltd. All rights reserved.
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with each harmonic are balanced in accordance with the uniqueness theorem of a trigonometric series. We
denote the number of terms in the Fourier series expansion as NT ¼ 2NH+1, where NH is the number of
harmonics retained. This method produces NT equations to determine the NT harmonic coefficients. Thus, an
analytical solution can be obtained in terms of a Fourier series with NH harmonics and NT terms. In general, a
more accurate representation of the true solution is achieved by retaining more harmonics.

The high dimensional harmonic balance (HDHB) approach is a modification of the classical HB method
and was first presented by Hall and Thomas et al. [1,2]. The basis of the HDHB method is that instead of
working in the Fourier domain as with the conventional HB approach, the problem is cast into the time
domain. Rather than solving for Fourier coefficients, the dependent variables are discretized in time and
stored at equally spaced time intervals for one period of oscillation. This novel modification circumvents the
need to balance Fourier coefficients as required in the classical HB approach. Also, the HDHB approach
allows for simple implementation of the HB methodology into large scale fluid and structural dynamic
computational codes. It is worth noting here that other HB methods have been successful in computing
periodic solutions for aeroelastic problems [3–6]. A more detailed discussion on the many variants of the HB
methodology can be found in Dimitriadis’ continuation study of higher-order HB solutions for nonlinear
aeroelastic systems [7].

One shortcoming of using the HDHB approach for solving nonlinear systems is that it has a tendency to
produce nonphysical solutions in addition to the physically meaningful ones that are sought [8]. This is due to the
treatment of the nonlinear terms in the governing equations and can lead to numerical instability. A nonphysical
solution can be identified by a lack of convergence in the Fourier series. This effect is known as aliasing.

Liu et al. and Hall [8] formally examined the effects of aliasing in a comparison of the classical HB and HDHB
approaches for a Duffing oscillator. Through analytical expansion, they demonstrated that the classical HB
method provides high accuracy and is free of nonphysical solutions. However, when many harmonics are
included, the HB solution becomes analytically cumbersome. With the numerical HDHBmethod, highly accurate
results can also be obtained for a large number of harmonics. In their work, Liu et al showed that the nonlinear
equations produced by the HDHB approach contain all the terms produced by classical HB approach, plus some
additional terms which cause the aliasing. Through numerical simulation, they revealed that aliasing in the
HDHB method is more prevalent for cases with large motions, especially near regions of hysteresis. As more
harmonics are used, the effects of aliasing are reduced with increased computational expense. They also showed
that in the HDHB solution of the Duffing equation, approximately twice as many harmonics must be retained in
order to achieve the same order of accuracy as the classical HB method.

The aim of this present study is to develop dealiasing techniques for the HDHB approach in order to
improve its efficiency and accuracy for nonlinear dynamical systems. Dealiasing may be accomplished by
eliminating or reducing the occurrence of nonphysical solutions via application of a filter to the solution.
Results will be given here for both frequency and time domain filtering. To align with the efforts of Liu et al.
[8], a Duffing oscillator will serve as the prototypical system to study the HDHB method.

A Duffing oscillator [9,10] is a nonlinear dynamical system that may exhibit both periodic and chaotic
behavior. Within the regime of periodic solutions, the Duffing oscillator is well suited for HB analysis. The
governing second-order differential equation for a forced Duffing oscillator is given by

m €xþ c _xþ kxþ ax3 ¼ F sinðotÞ, (1)

where m, c, k, a, F, and o are the mass, damping, linear stiffness, nonlinear stiffness, harmonic forcing
amplitude, and excitation frequency of the system, respectively. Physically, a Duffing oscillator can be
idealized as a damped mechanical oscillator having a nonlinear spring. That is, the restoring force of the
system does not exactly obey Hooke’s law. The linear stiffness k is generally assumed to be positive, while a
positive value of a models a hardening spring and a negative value of a models a softening spring.
Representing Eq. (1) in a non-dimensional form will enable us to investigate nonlinear phenomena in a more
generic manner. We proceed by introducing the natural frequency o0, the damping ratio z, the non-
dimensional forcing amplitude ~F , the non-dimensional frequency ~o, the non-dimensional time t, and the state
variable ~x such that

o0 ¼
ffiffiffiffiffiffiffiffiffi
k=m

p
; z ¼ c=2mo0; h ¼

ffiffiffiffiffiffiffiffi
k=a

p
; ~F ¼ F=kh; ~o ¼ o=o0; t ¼ o0t; ~x ¼ x=h. (2)
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Inserting the parameters from Eq. (2) into Eq. (1) results in the following non-dimensional equation:

€~xþ 2z _~xþ ~xþ ~x3 ¼ ~F sinð ~otÞ. (3)

For convenience, the � notation is omitted for the remainder of this study and t is replaced by t. All variables
remain in non-dimensional form. Alternatively, Eq. (3) may be expressed as a system of two first-order
differential equations. By defining y ¼ _x, we have

_Xþ R� F ¼ 0, (4)

where

X ¼
x

y

( )
; _X ¼

_x

_y

( )
; R ¼

�y

2zyþ xþ x3

( )
; F ¼

0

F sinðotÞ

( )
; 0 ¼

0

0

� �
.

The non-dimensional system presented in Eq. (4) is the nonlinear dynamical system that will be solved using
the HB methodology. Physically, variable x represents the displacement of the system, while variable
y represents the velocity. Note that it is not necessary to express the Duffing equation as a system of first-order
equations for the HDHB method. In fact, doing so increases the computational burden. However, rewriting
the governing equation as a system of first-order equations will enable us to specify initial conditions for both
displacement and velocity.

2. HB theory

Functions that are smooth and periodic in time may be expressed exactly by a Fourier series with
appropriate Fourier coefficients. We will assume the solution to Eq. (4) to be smooth and periodic with period
T ¼ 2p/o, where o is the fundamental frequency. Consequently, the solutions for displacement x and velocity
y can be expanded in a Fourier series. For example,

xðtÞ ¼ x̂0 þ
XNH

k¼1

½x̂2k�1 cosðkotÞ þ x̂2k sinðkotÞ� and yðtÞ ¼ ŷ0 þ
XNH

k¼1

½ŷ2k�1 sinðkotÞ þ ŷ2k cosðkotÞ�. (5)

The only task that remains is to evaluate the Fourier coefficients for the solution variables x and y. This can be
done analytically through the classical HB approach or numerically through the HDHB approach. Note that
if the number of harmonics used in the expansion NH is infinity, then Eq. (5) represents x and y exactly.
Obviously, using an infinite number of harmonics is not computationally feasible. In practice, a finite number
of harmonics are used. We will define the harmonic approximation error as the difference between the true
solution where NH is infinity and the approximate solution where NH is a finite integer.

It is worth noting here that the HB methodology provides a fundamental advantage compared to time-
marching methods, such as Runge–Kutta schemes, for time-periodic problems. Namely, time-marching
methods include both the transient and the steady state response in the solution. In many cases, only the
steady state response is desired. To its advantage for such problems, the HB method only includes the steady
state response.

2.1. Classical HB method

The classical HB method is an analytical approach to determine the Fourier coefficients in Eq. (5). The first
step in the classical HB method is the substitution of the Fourier expansions into the governing equations. The
resulting equations are then expanded and the terms associated with each harmonic are balanced in
accordance with the uniqueness theorem of a trigonometric series. This method produces NT ¼ 2NH+1
equations to determine the NT harmonic coefficients. Note that when nonlinear terms are present, evaluation
of the Fourier coefficients becomes nontrivial. Such is the case with the cubic term in the Duffing equation.

Liu et al. [8] showed that the Fourier expansion of the cubic nonlinearity in Eq. (4) results in wavenumbers
that are greater than the number of harmonics used in the Fourier expansion. One way to circumvent this
problem is to expand the nonlinear terms using only the first NH terms of the Fourier series, which will be done
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here for the classical HB method. It should be noted that other techniques can be used to expand the nonlinear
terms [7]. For the classical HB approach, the cubic term may be written as

ðxðtÞÞ3 � ĉ0 þ
XNH

k¼1

½ĉ2k�1 cosðkotÞ þ ĉ2k sinðkotÞ�, (6)

where the Fourier coefficients of the cubic term are given by

ĉ0 ¼
1

2p

Z 2p

0

x̂0 þ
XNH

k¼1

½x̂2k�1 cosðktÞ þ x̂2k sinðktÞ�

 !3

dt,

ĉ2k�1 ¼
1

p

Z 2p

0

x̂0 þ
XNH

k¼1

½x̂2k�1 cosðktÞ þ x̂2k sinðktÞ�

 !3

cosðktÞdt,

ĉ2k ¼
1

p

Z 2p

0

x̂0 þ
XNH

k¼1

½x̂2k�1 cos ðktÞ þ x̂2k sin ðktÞ�

 !3

sinðktÞdt.

Now we can substitute Eqs. (5) and (6) into Eq. (4). An algebraic expansion and collection of terms associated
with each harmonic yields a system of 2NT equations to determine the 2NT Fourier coefficients. The resulting
classical HB system can be expressed in matrix form. Namely,

oAQ̂þ R̂� F̂ ¼ 0, (7)

where

Q̂ ¼

q̂0

q̂1

q̂2

..

.

q̂2NH

2
66666664

3
77777775

NT�2

; R̂ ¼

r̂0

r̂1

r̂2

..

.

r̂2NH

2
66666664

3
77777775

NT�2

; F̂ ¼

0

0

f̂3

..

.

0

2
66666664

3
77777775

NT�2

with

q̂k ¼ bx̂k ŷkc1�2; r̂k ¼ b�ŷk 2zŷk þ x̂k þ ĉkc1�2; f̂3 ¼ b0 Fc1�2

and

A ¼

0

J1

J2

. .
.

JNH

2
66666664

3
77777775

NT�NT

; Jk ¼
0 k

�k 0

� �
fk ¼ 1; 2; . . . ;NHg.

The HB solution array Q̂ contains the Fourier coefficients for each solution variable. We denote the solution to
the HB system (7) as HB1 when NH ¼ 1, HB2 when NH ¼ 2, and so on. The system can be solved exactly for
the linear case when a ¼ 0. For the nonlinear case, solutions for x̂k and ŷk cannot be determined analytically.
Instead, solutions for the harmonic amplitudes Ak can be found, along with the peak amplitude A, where

A0 ¼

ffiffiffiffiffi
x̂2
0

q
; Ak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x̂2
2k�1 þ x̂2

2k

q
; A ¼

XNH

k¼0

Ak. (8)

Using Eq. (8), the classical HB approach generates NH analytical expressions that can be used to generate
solutions for the harmonic amplitudes An. Only the real valued solutions are physically meaningful.



ARTICLE IN PRESS
A. LaBryer, P.J. Attar / Journal of Sound and Vibration 324 (2009) 1016–10381020
This method yields highly accurate solutions that are free of aliasing. However, we note that implementing the
classical HB method for dynamical systems generated via computational fluid dynamics or structural dynamics
can become unwieldy, especially when many harmonics are used. Moreover, the classical HB approach can
only handle systems with nonlinearities that are simple polynomial functions of the solution variables. When
more complex nonlinearities are present, the HB system may become impossible to implement [8]. The HDHB
approach overcomes these difficulties.
2.2. High dimensional HB method

The basis of the HDHB approach is that the Fourier coefficients can be related to the time domain variables
through a discrete Fourier transform operator E. The time domain variables are represented at uniformly
spaced time intervals for one period of oscillation. Namely,

Q̂ ¼ E ~Q; R̂ ¼ E ~R; F̂ ¼ E ~F, (9)

where

~Q ¼

~qðt0Þ

~qðt1Þ

~qðt2Þ

..

.

~qðt2NH
Þ

2
66666664

3
77777775

NT�2

; ~R ¼

~rðt0Þ

~rðt1Þ

~rðt2Þ

..

.

~rðt2NH
Þ

2
66666664

3
77777775

NT�2

; ~F ¼

~fðt0Þ
~fðt1Þ
~fðt2Þ

..

.

~fðt2NH
Þ

2
66666664

3
77777775

NT�2

with

~qðtiÞ ¼ bxðtiÞ yðtiÞc1�2; ~rðtiÞ ¼ b�yðtiÞ 2zyðtiÞ þ xðtiÞ þ xðtiÞ
3
c1�2,

~fðtiÞ ¼ b0 F sinðtiÞc1�2; ti ¼
2pi

NT

fi ¼ 0; 1; 2; . . . ; 2NHg.

The Fourier transform operator is given by

E ¼
2

NT

1=2 1=2 � � � 1=2

cos t0 cos t1 � � � cos t2NH

sin t0 sin t1 � � � sin t2NH

cos 2t0 cos 2t1 � � � cos 2t2NH

sin 2t0 sin 2t1 � � � sin 2t2NH

..

. ..
. ..

.

cos NHt0 cos NHt1 � � � cos NHt2NH

sin NHt0 sin NHt1 � � � sin NHt2NH

2
6666666666666664

3
7777777777777775

NT�NT

.

Note that the solution array ~Q contains the time domain solution variables for displacement and velocity
and is discretized in time at NT evenly spaced intervals for one period of oscillation. The time domain variables
can also be related to the Fourier coefficients through the inverse of the Fourier transform operator E. That is,

~Q ¼ E�1Q̂; ~R ¼ E�1R̂; ~F ¼ E�1F̂, (10)
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where

E�1 ¼

1 cos t0 sin t0 � � � cos NHt0 sin NHt0

1 cos t1 sin t1 � � � cos NHt1 sin NHt1

..

. ..
. ..

. ..
. ..

.

1 cos t2NH
sin t2NH

� � � cos NHt2NH
sin NHt2NH

2
666664

3
777775

NT�NT

.

It is now possible to work entirely in terms of the time domain variables, which is much easier than directly
solving for Fourier coefficients. The resulting HDHB system can be written as

oD ~Qþ ~R� ~F ¼ 0, (11)

where the Fourier derivative operator is given by

D ¼ E�1AE. (12)

The solution to the HDHB system (11) can be obtained numerically using an iterative root finding scheme
such as the Newton–Raphson method [11]. Alternatively, methods such as pseudo-time-marching [12], used to
solve steady state problems in computational fluid dynamics, may be used for high dimensional systems.
Consistent with Liu et al. [8], we denote the solution to the HDHB system as HDHB1 when NH ¼ 1, HDHB2
when NH ¼ 2, and so on. The Fourier coefficients can readily be determined from the time domain solutions
per Eq. (10). From there, the harmonic amplitudes An and the peak amplitude A can be obtained per Eq. (8).
Note that we have taken full advantage of the assumption that the solution is periodic in time. Thus, the
computational cost associated with a transient response is completely avoided.
3. Evidence of aliasing

One shortcoming of the HDHB method is that when nonlinearities are present in the governing equations, it
will produce nonphysical solutions in addition to the physically meaningful ones that are sought. This is due
to the use of the discrete Fourier transform operator E, which produces additional terms in the equations
that are not present with the classical HB method. The additional terms arise from multiplication with higher-
order harmonics that are left unresolved with the expansion in Eq. (6). As a result, the HDHB method
produces identical solutions compared to the classical HB method, plus some additional solutions that are
nonphysical.

The origin of the aliasing terms in the HDHB method can be seen more clearly by examining the complete
Fourier expansion of the cubic term:

ðxðtÞÞ3 ¼ ĉ0 þ
XNH

k¼1

½ĉ2k�1 cosðkotÞ þ ĉ2k sinðkotÞ� þ
X2NH

k¼NHþ1

½ĉ2k�1 cosðkotÞ þ ĉ2k sinðkotÞ� (13)

In the classical HB approach, the expansion of the cubic term is obtained by neglecting all wavenumbers
greater than NH (Eq. (6)). In the HDHB method, the entire Fourier expansion in Eq. (13) is included. The
treatment of the cubic function in the time domain leads to the generation of wavenumbers greater than NH in
the Fourier domain. The Fourier transform operator E does not account for these higher-order terms, and as a
result, spurious solutions emerge. This principle can be extended to other systems with nonlinear terms that
involve multiplication of the solution variables. In general, the product of two or more discrete functions in
the physical domain corresponds to a circular convolution in Fourier space. A nonlinearity that involves
multiplication of two or more terms containing wavenumbers k within the domain [0,NH] will produce
additional wavenumbers beyond NH.
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3.1. Evidence of aliasing in amplitude response curves

In this section, the effects of aliasing are examined by comparing amplitude response curves in the frequency
domain. For the driven oscillator problem studied here, a single forcing frequency is specified along with the
initial conditions for the solution array. Using the Newton–Raphson method, the system will converge to a
solution, provided the initial conditions are within a certain radius of convergence. A peak amplitude curve
can be generated by incrementally increasing or decreasing the frequency. At each step, the solution array
becomes the initial conditions for the next computation. This procedure is known as frequency marching. For
nonlinear dynamical systems, amplitude response curves are often accompanied with regions of hysteresis. The
upper branch that is generated by increasing the forcing frequency is typically of great interest, and is
commonly referred to as the backbone curve. Physically, the peak amplitudes on the upper branch of the
backbone curve represent the maximum displacement of the system as a result of increasing the forcing
frequency.

In Fig. 1, amplitude response curves produced by the classical HB and HDHB methods using two
harmonics are compared. To align with the work of Liu et al. [8], the damping ratio z is set to 0.1 and the non-
dimensional forcing amplitude F is set to 1.25. These parameters are held constant for the remainder of this
study. Two sets of harmonic amplitude curves are produced by the HDHB system: one by marching the
frequency from 0.1 to 2.8 at increments of Do ¼ 0.01, and another by marching the frequency from 2.8 to 0.1
at increments of Do ¼ 0.01.

Observe in Fig. 1 that the prescribed damping ratio and forcing amplitude result in a peak amplitude curve
with a large region of hysteresis. A properly behaved Duffing oscillator subject to an increasing forcing
frequency will produce a backbone curve similar to the one generated by the HB2 system. When the frequency
passes the inflection near o ¼ 2.40, the peak amplitude will jump down and continue on the lower branch.
Similarly, an oscillator that begins on the lower branch will jump to the upper branch as the frequency
decreases past the inflection near o ¼ 1.75. Note that the unstable branch generated by the HB solution
cannot be predicted with the HDHB system using the frequency marching procedure.

The HB2 solution only contains harmonic approximation error. We will define aliasing error as the
difference between the HDHB solution and the HB solution for a given value of NH. From Fig. 1, it is
apparent that the HDHB2 solution contains not only harmonic approximation error, but also a large degree
of aliasing error. Generally speaking, and as demonstrated in Fig. 1, the effects of aliasing are more
pronounced for large motions and near regions of large hysteresis. Note that the HDHB2 solution obtained by
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Fig. 1. Peak response amplitudes for the HDHB2 and HB2 systems. HDHB2 by increasing o (upward triangle); HDHB2 by decreasing o
(downward triangle); HB2 (solid line).
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increasing the frequency fails to drop down to the lower branch. Instead, the amplitudes continue to increase
beyond the point of hysteresis.

In addition to frequency marching, other methods for initial condition generation are possible. Here, the
nature of the solutions generated by the HDHB system is studied from a statistical perspective by generating
initial conditions through Monte Carlo simulation. That is, initial conditions are randomly specified for a
large number of computations in order to determine the probability of converging to any particular solution.
The first harmonic amplitudes A1 of displacement and velocity are randomly specified within the range of
75 units. The forcing frequency is set to o ¼ 2.0 to produce the three branches of the hysteresis curve seen in
Fig. 1. In Fig. 2, Monte Carlo histograms are presented for the solution convergence of the HDHB system
using two and four harmonics. For each simulation, 104 sample initial conditions are specified.

For the HDHB2 and HDHB4 systems, the probability of converging to any particular solution is highly
sensitive to initial conditions. In Fig. 2, the HDHB2 simulation yields 23 unique solutions while the HDHB4
simulation yields 130 unique solutions. Only the three highlighted solutions are physically meaningful. The
rest of the solutions present are due to aliasing. In the HDHB2 simulation, the probability of converging to
the lower, unstable, and upper branches are 0.025, 0.022, and 0.123, respectively. In the HDHB4 simulation,
the probability of converging to the lower, unstable, and upper branches are 0.026, 0.020, and 0.467,
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Fig. 2. Monte Carlo histograms for the solutions of the HDHB system at o ¼ 2.0. (a) Results for the HDHB2 simulation. (b) Results for
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respectively. In sum, the probability of converging to a physical solution is 0.170 for the HDHB2 simulation
and 0.467 for the HDHB4 simulation. In general, the attraction to physical solutions increases as more
harmonics are retained. Finally, note that the peak amplitude of 6.58 at o ¼ 2.0 in Fig. 1 is one of the spurious
solutions predicted by the HDHB2 simulation in Fig. 2.

4. Dealiasing by filtering in the frequency domain

In order to improve the numerical properties of the HDHB solution for nonlinear systems, the aliasing error
should be reduced. Complete aliasing removal can be accomplished by truncating all wavenumbers that are
polluted with nonphysical terms [13,14]. This technique involves zeroing the Fourier coefficients for all
wavenumbers greater than some cutoff wavenumber kc. For example, Orszag [15] was the first to demonstrate
that setting kcp(2/3)NH will remove all aliasing terms for systems containing quadratic nonlinearities.
Throughout the literature, this relationship is referred to as the two-thirds rule. In general, when the
nonlinearity of the system is a polynomial of the solution variables, the relationship between the cutoff
wavenumber kc and number of harmonics used for computation NH is given by

kc

NH

p
2

Fþ 1
(14)

where F is the degree of the nonlinearity. This general concept of wavenumber truncation can be implemented
by filtering the Fourier coefficients in the frequency domain. For future convenience, we introduce the scaled
wavenumber w ¼ pk/NH so that the domain of w is [0,p] and the scaled cutoff wavenumber is wc ¼ pkc/NH.
The filtered Fourier coefficients can be written as

Q̂
0
¼ GðwÞQ̂ (15)

where G(w) is commonly referred to as a low-pass Fourier filter or transfer function. Recall that the HDHB
method is written and solved for in the time domain. In order to apply the Fourier filter, the time domain
variables must first be transformed to the frequency domain using the Fourier transform operator E. After the
filtering takes place, the variables must be transformed back to the time domain with the inverse Fourier
transform operator E

�1. This filtering procedure must be performed on the solution array Q before each
nonlinear computation and on the nonlinear forcing array R after each computation.

4.1. The one-half rule

Orszag’s two-thirds rule for quadratic nonlinearities becomes the one-half rule for the Duffing oscillator,
which contains a cubic term. The top half of all wavenumbers must be truncated. The Fourier filter in Eq. (15)
becomes

GðwÞ ¼
1 for wpp=2;

0 for w4p=2:

(
(16)

Eq. (14) guarantees that this Fourier filter will completely eliminate all aliasing terms in the HDHB system.
Note that sharp cutoff functions such as the one in Eq. (16) are susceptible to Gibbs-type phenomena. Also,
the computational economy of such a filter is questionable. While wavenumbers w greater than p/2 are subject
to aliasing, they also contain portions of the true solution. For such reasons, it is worth investigating other
filters that decay smoothly and retain a portion of higher Fourier modes.

4.2. Fourier smoothing

Hou and Li [16] demonstrated that a Fourier smoothing method can be used to reduce the effects of aliasing
with less harmonic approximation error than truncation. Rather than completely zeroing wavenumbers greater
than wc, it is possible to gradually damp out the highest frequency Fourier modes by choosing G(w) to be

GðwÞ ¼ e�aðw=pÞ
m

. (17)
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Here, a is chosen to be 36 and m is chosen to be 20. This filter design allows G(w) to remain very close to unity
for wop, and then smoothly and rapidly decay close to zero near w ¼ p. The selection of a results in G(p)
evaluating to machine precision, i.e. 10�16. The selection of m allows G(p/2) to remain within 10�5 from unity.
In Fig. 3, the profile of the Fourier smoothing filter is compared to that of the one-half rule.

From Fig. 3 we can see that the Fourier smoothing filter retains more harmonics than the one-half rule.
Thus, a decrease in harmonic approximation error may be achieved with the possible inclusion of some
aliasing error.

4.3. Frequency domain filtering results

In this section, the results for filtering the HDHB solution in the frequency domain are presented. The
solution for the HDHB2 system is recomputed, but this time, the system is filtered using the one-half rule and
Fourier smoothing. In Fig. 4, the filtered HDHB2 amplitude response curves are presented. The HB2
amplitude response curve is included as a baseline.

As demonstrated in Fig. 4, the filtered HDHB2 system converges only to physically legitimate peak
amplitudes, which is a dramatic improvement compared to the unfiltered peak amplitude curve. Moreover,
when the one-half rule is applied, the HDHB2 system yields identical results compared to the HB1 system. In
general, the HB system using NH harmonics produces the same results as the HDHB system using 2NH

harmonics when the one-half rule is applied. These results are consistent with the findings of Liu et al. [8].
The numerical accuracy of the HDHB system will now be examined in a more general manner. In order

to compare the accuracy of the different filtering methods, a true solution must be established. Recall that
with the HB methodology, a true solution can only be obtained by retaining an infinite number of harmonics.
Here, the ‘‘true’’ solution is represented by the HDHB200 system filtered by the one-half rule, which is
identical to the HB100 solution. Application of the one-half rule eliminates aliasing error while the use of two
hundred harmonics renders the harmonic approximation error insignificant. The true peak amplitude at
o ¼ 2.0 is approximately A ¼ 2.1817764.

We will compare the peak response amplitudes generated by frequency marching up the backbone curve to
o ¼ 2.0 as a function of the number of harmonics NH. In Fig. 5, the corresponding peak amplitudes are
compared for the unfiltered response, the one-half rule and Fourier smoothing. In addition, the percent errors
of the peak displacement amplitudes compared to the true solution are presented.

As shown in Fig. 5, frequency marching of the unfiltered HDHB system results in the solution following a
nonphysical branch of the backbone curve when three or less harmonics are retained. This divergent behavior
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results in large errors and numerical instability. Conversely, when four or more harmonics are retained,
frequency marching of the unfiltered system results in physically meaningful amplitudes. The HDHB systems
resulting from the one-half rule and Fourier smoothing filtering converge to the backbone for all harmonics.

Several important trends for frequency marching of the Duffing equation can be drawn from Fig. 5. When
only a few harmonics are used, the unfiltered HDHB system yields pathological results. When more harmonics
are retained, such as four in this example, the unfiltered system provides the best approximation to the true
solution. Therefore, the unfiltered system results in the lowest harmonic approximation error when a sufficient
number of harmonics are retained. The one-half rule results in the largest harmonic approximation error.
With the one-half rule, approximately twice the number of harmonics must be retained in order to gain the
same amount of accuracy provided by the unfiltered system. Fourier smoothing sufficiently reduces aliasing so
that only physical amplitudes are predicted for frequency marching. For a given value of NH, Fourier
smoothing provides a better approximation to the true solution as compared to the one-half rule.

Using the same procedure described in Section 3.1, we now investigate the statistical behavior of solutions
generated by the frequency filtered HDHB system by Monte Carlo simulation for 104 initial conditions at
o ¼ 2.0. In Fig. 6, histograms are presented for the HDHB4 system filtered by the one-half rule and by
Fourier smoothing.

Observe in Fig. 6 that the HDHB4 system filtered by the one-half rule admits only three physical solutions.
The HDHB4 system filtered by Fourier smoothing admits eight unique solutions, five of which are of the
spurious variety. While the elimination of nonphysical solutions is ideal, the five yielded by Fourier smoothing
are a considerable improvement over the 127 nonphysical solutions yielded by the unfiltered HDHB4 system
in Fig. 2. For the simulations which used the one-half rule filtering, the probability of converging to the lower,
unstable, and upper branches are 0.026, 0.026, and 0.948, respectively. In the Fourier smoothing simulations,
the probability of converging to the lower, unstable, and upper branches are 0.025, 0.025, and 0.798,
respectively. In sum, the probability of converging to a physical solution is 1.000 for the one-half rule
simulation and 0.848 for the Fourier smoothing simulation. These statistics are much improved when
compared to the 0.467 probability of converging to a physical solution for the unfiltered HDHB4 simulation.

To obtain a more comprehensive understanding of the numerical and statistical behavior of the filtered and
unfiltered HDHB solutions, Monte Carlo simulations are reproduced for various values of NH. Each
simulation results in a certain number of unique solutions at o ¼ 2.0, along with the corresponding probability
of each solution occurring. The results are presented in Fig. 7 where up to 10 harmonics are retained.

From Fig. 7 it can be seen that the number of spurious solutions produced by the unfiltered system
dramatically increases with the number of harmonics. However, the probability of converging to physical
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amplitudes improves as more harmonics are used. The one-half rule consistently admits three physical
amplitudes for all cases. Interestingly, the Fourier smoothing filter eliminates all spurious solutions for certain
harmonics, i.e. for two, three, five, and nine harmonics. Even when Fourier smoothing does not completely
eliminate spurious solutions, the occurrence is always reduced compared to the unfiltered system, usually by at
least a full order of magnitude. The probability of the Fourier smoothing method admitting physical
amplitudes is always less than or equal to the one-half rule, but greater than the unfiltered system.
4.4. Higher-order nonlinearities

Higher-order nonlinearities can be modeled by including additional terms in the polynomial expansion
of the restoring force. For example, a fifth-order nonlinearity can be modeled by adding an x5 term to the
R vector in Eq. (4). Physically, this additional term increases the hardening behavior of the spring.
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The HDHB formulation for a fifth-order nonlinearity is aliased to a greater extent than the HDHB
formulation for the Duffing oscillator. Qualitatively, the effects of aliasing while backbone marching are
similar. The unfiltered system converges to nonphysical solutions for lower harmonics. When a certain number
of harmonics are retained, the system behavior changes such that frequency marching yields physically correct
solutions. For example, in Fig. 5, this occurs when NH goes from 3 to 4. When a fifth-order nonlinearity is
included, this transition occurs when NH goes from 5 to 6.

Suitable extensions of the dealiasing techniques developed in this section may be employed for the
system with a fifth-order nonlinearity. Orszag’s two-thirds rule becomes the one-third rule in accordance
with Eq. (14). Using the same design criteria as in Section 4.2, the coefficients for the Fourier smoothing
method become a ¼ 36 and m ¼ 12. The one-third rule and Fourier smoothing method successfully
eliminate the effects of aliasing for backbone marching. The one-third rule completely eliminates
aliasing terms while the Fourier smoothing method provides a better approximation to the true
solution.
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4.5. Frequency domain filtering summary

The one-half rule completely eliminates the occurrence of spurious solutions by truncating all wavenumbers
that contain aliasing terms. This technique is effective yet wasteful, as the truncated wavenumbers also
contribute to the accuracy of the physically meaningful solutions. The Fourier smoothing method sufficiently
reduces the occurrence of aliasing terms while retaining a greater portion of wavenumbers. When initial
conditions are generated by backbone marching, the Fourier smoothing method consistently converges to
physical solutions and provides improved harmonic approximation error compared to the one-half rule.

From an implementation and efficiency standpoint, one of the benefits of the HDHB method is that the
equations are written and solved entirely in terms of time domain variables. In order to filter using the one-half
or Fourier smoothing frequency domain filters, the time domain variables must first be transformed to the
frequency domain where the filtering takes place and then transformed back to the time domain. For systems
with many dof, this can become computationally expensive. Instead, a filtering procedure which operates
entirely upon the time domain variables would be more efficient. Such a procedure will be now outlined.
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5. Dealiasing by filtering in the time domain

In this section we design temporal filters that will attempt to ‘‘mimic’’ the results of the Fourier smoothing
filter using a Padé type compact finite difference scheme. This circumvents the need to transform variables
between the time and frequency domains. The underlying goal is to optimize filtering performance while
economizing computational expense.

5.1. Temporal filter construction

Lele demonstrated that compact finite difference schemes can be constructed for low-pass filtering
applications [17]. The fundamental idea is that by smoothing a discretized function in time, high wavenumbers
in the frequency domain can be effectively damped out. We proceed by considering the uniformly discretized
HDHB solution vector components from Eq. (9), which we will denote here as qi. The general form for the
compact finite difference approximation on a seven-point stencil is

bq0i�2 þ aq0i�1 þ q0i þ aq0iþ1 þ bq0iþ2 ¼ aqi þ
b

2
ðqiþ1 þ qi�1Þ þ

c

2
ðqiþ2 þ qi�2Þ þ

d

2
ðqiþ3 þ qi�3Þ, (18)

where q0i denotes the smoothed, or filtered, value of qi. The compact finite difference scheme presented in
Eq. (18) is a generalization of the Padé scheme. Here, we denote the stencil size (number of temporal grid
points in the differencing scheme) as NS. The stencil size may be altered to achieve various levels of formal
accuracy, with the constraint NSpNT. Since the HDHB solution vectors are periodic in time, periodic
boundary conditions may be assumed. Note that when a and b are zero, Eq. (18) provides an explicit
differencing scheme. That is, the smoothed values q0i can be determined directly from the unfiltered values qi.
When a or b are nonzero, Eq. (18) provides an implicit differencing scheme. If a is nonzero and b is zero, the
result is a cyclic tridiagonal linear algebraic system. If a and b are nonzero, the result is a cyclic pentadiagonal
linear algebraic system. Highly efficient algorithms exist for solving cyclic tridiagonal and pentadiagonal
implicit schemes [18,19] which are variants of the Thomas algorithm [11].

Next, we consider what temporal smoothing does to the simple complex sinusoid q(t) ¼ ejot. Substitution of
the sinusoid into Eq. (18), along with Euler’s identity, results in a transfer function G(o) such that
q0i ¼ G(o)qi. Realizing that the frequency o corresponds to the scaled wavenumber w ¼ pk/NH, we obtain

GðwÞ ¼
aþ b cosðwÞ þ c cosð2wÞ þ d cosð3wÞ

1þ 2a cos ðwÞ þ 2b cosð2wÞ
. (19)

The temporal filter design process can be accomplished by imposing specific conditions on the transfer
function G(w). For low-pass filters, we generally require G(p) ¼ 0. This constraint automatically results in
dG(p)/dw ¼ 0. In addition, the location of the cutoff can be controlled by requiring G(w1) ¼ u1
and G(w2) ¼ u2. Note that special care must be taken when posing conditions on the transfer function.
Certain values may result in overshoot behavior. Insofar as possible, we desire 0pG(w)p1 for w in [0,p].
To best approximate the Fourier smoothing filter in Eq. (17), we have used G(7p/10) ¼ 0.97168343 and
G(8p/10) ¼ 0.66030611.

The relations for the coefficients a, b, c, d and a, b are generated by matching the Taylor series coefficients of
various orders. The truncation error of the Taylor series approximants effectively result in the damping of
higher wavenumbers. The relationship for the sixth-order approximation is

a ¼ 1
16
ð11þ 10a� 10bÞ; b ¼ 1

32
ð15þ 34aþ 30Þ; c ¼ 1

16
ð�3þ 6aþ 26bÞ; d ¼ 1

32
ð1� 2aþ 2bÞ. (20)

A different family of schemes is generated when posing the additional constraint d2G(p)/dw2
¼ 0. When this

constraint is imposed in addition to the fourth-order approximation, the resulting relationship is

a ¼ 1
4
ð2þ 3aÞ; b ¼ 1

16
ð9þ 16aþ 10bÞ; c ¼ 1

4
ðaþ 4bÞ; d ¼ 1

16
ð6b� 1Þ. (21)

The goal of our temporal filter design is to attempt to best replicate the Fourier smoothing transfer function
given in Eq. (17). Results will be given here for three temporal filtering schemes constructed on a seven-point
stencil, including an explicit, implicit tridiagonal and implicit pentadiagonal scheme. Since here, NS ¼ 7,
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Table 1

Temporal filtering coefficients for the seven point Padé type compact finite difference schemes.

Temporal scheme a b a b c d

Explicit – – 0.6875 0.46875 �0.1875 0.03125

Implicit tridiagonal 0.43026998 – 0.95641874 0.92591186 �0.026148757 0.0043581261

Implicit pentadiagonal 0.66099766 0.17096259 0.99574824 1.3303493 0.33621200 0.0016109707
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Fig. 8. Transfer function profiles for the temporal and frequency domain filtering schemes. One-half rule (dotted line); Fourier smoothing

with a ¼ 36 and m ¼ 20 (solid line); explicit temporal scheme (dashed line 1); implicit tridiagonal temporal scheme (dashed line 3); implicit

pentadiagonal temporal scheme (dashed line 5).
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the values of NT and NH for the HDHB method are limited to NTX7 and NHX3. For the explicit scheme, the
sixth-order coefficients a, b, c and d are readily determined by setting a and b to zero in Eq. (20). The
relationship for the implicit tridiagonal scheme is obtained by solving Eqs. (19) and (20) with b ¼ 0 along
with the constraint G(8p/10) ¼ 0.66030611. The coefficients for the implicit tridiagonal scheme are determined
by solving the fourth-order relationship in Eq. (21) along with the constraints G(7p/10) ¼ 0.95 and G(8p/10) ¼
0.66030611. Note that the value G(7p/10) ¼ 0.97168343 is adjusted in order to avoid undesirable overshoot
behavior in the transfer function. The coefficients for the three temporal schemes are listed in Table 1. The
temporal transfer function profiles are shown in Fig. 8, along with that of the one-half rule and Fourier
smoothing filters.

As with the frequency filtering procedure, the temporal filtering procedure must be performed on the
solution array Q before each nonlinear computation and on the nonlinear forcing array R after each
computation. There is no need to transform between the time and frequency domains.

5.2. Temporal domain filtering results

In this section, the results for filtering the HDHB system in the time domain are presented. The solution for
the HDHB3 system is computed using the explicit, implicit tridiagonal, and implicit pentadiagonal temporal
filtering schemes described in Table 1. The amplitude response curves are presented in Fig. 9. For comparison,
the response curves for the HB2 system, the unfiltered HDHB3 system, and the HDHB3 system filtered by
Fourier smoothing in the frequency domain are included.
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From Fig. 9, the filtered HDHB3 system successfully converges to physical response amplitudes for each of
the presented temporal filtering schemes. For this case, the temporal filters appear to qualitatively and
quantitatively match the results yielded by Fourier smoothing in the frequency domain.

The numerical accuracy of the temporally filtered HDHB system will now be examined by comparing the
results with the true response amplitude given in Section 4.3. Again, we compare the peak response amplitudes
generated by frequency marching up the backbone curve to o ¼ 2.0 as a function of the number of harmonics
NH. In Fig. 10, the peak amplitudes are compared for the explicit, implicit tridiagonal and implicit
pentadiagonal temporal filters. The response of the unfiltered HDHB system and the HDHB system filtered by
Fourier smoothing in the frequency domain are included for comparison.

From Fig. 10, the temporal filtering schemes successfully result in physical convergence of the HDHB
system for all harmonics when the initial conditions are generated by backbone marching. From the
displacement error curves, the overall accuracy of the implicit schemes is greater than that provided by the
explicit scheme. This is true for all harmonics except for NH ¼ 3, where it is suspected that the explicit scheme
enjoys a fortuitous cancellation of harmonic and aliasing error. Moreover, the pentadiagonal implicit scheme
generally provides greater accuracy than the tridiagonal implicit scheme. Note that for up to approximately
NH ¼ 10, the implicit pentadiagonal scheme closely matches, if not outperforms, the Fourier smoothing
method. For higher harmonics, the percent displacement error decreases for the temporal schemes at a slower
rate than the Fourier smoothing method. This effect is expected due to the finite order of the temporal filtering
schemes and becomes less pronounced as the number of stencil points NS for the temporal schemes is
increased.

Using the same procedure described in Sections 3.1 and 4.3, we investigate the statistical behavior of the
solutions generated by the temporally filtered HDHB system using Monte Carlo simulation for 104 initial
conditions at o ¼ 2.0. In Fig. 11, histograms are presented for the HDHB4 system filtered by the explicit,
implicit tridiagonal and implicit pentadiagonal temporal schemes.

Observe in Fig. 11 that the temporal filtering schemes significantly decrease the number of spurious
solutions compared to the 127 generated by the unfiltered HDHB4 system in Fig. 2. The number of unique
solutions admitted by the explicit, implicit tridiagonal, and implicit pentadiagonal schemes are 7, 43, and 19,
respectively. This behavior is quite similar to that of the Fourier smoothing method in Fig. 6, but with one
subtle difference. The peak amplitudes of the spurious solutions admitted by the temporal filtering scheme are
orders of magnitude larger compared to Fourier smoothing.
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The probability of the temporal filtering schemes converging to a physically legitimate solution can be
deduced from Fig. 11. In the explicit, implicit tridiagonal, and implicit pentadiagonal simulations, the
probability of converging to the (lower, unstable, upper) branches are (0.029, 0.025, 0.932), (0.028, 0.023,
0.788), and (0.027, 0.017, 0.539), respectively. In sum, the probability of converging to a physical solution for
the explicit, implicit tridiagonal, and implicit pentadiagonal simulations are 0.986, 0.839, and 0.583,
respectively.

Next, the Monte Carlo simulations are reproduced for various values of NH. The results are presented in
Fig. 12 where up to10 harmonics are retained. For comparison, the results for the unfiltered HDHB system,
along with that of the HDHB system filtered by Fourier smoothing in the frequency domain, are included.

In Fig. 12, first note that the temporal filtering schemes always reduce the number of spurious solutions
compared to the unfiltered system. Also, the probability of converging to a physical solution is always
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improved over the unfiltered system. For lower harmonics, i.e. NH p4, the explicit temporal scheme and
Fourier smoothing are more effective at decreasing the number of spurious solutions compared to the two
implicit temporal schemes. For higher harmonics, it is difficult to deduce any trends regarding the number of
spurious solutions. It is also worth noting that the explicit temporal scheme generally has a higher probability
of converging to physical solutions compared to the Fourier smoothing method or implicit temporal schemes.

5.3. Temporal domain filtering summary

The Padé type temporal filtering results compare favorably with the frequency domain Fourier smoothing
results. When the initial conditions are generated by backbone marching, the temporally filtered HDHB
system only converges to physical solutions. Overall, the implicit temporal schemes provide greater numerical
accuracy compared to the explicit scheme. For lower numbers of retained harmonics, i.e. NHp10, the implicit
pentadiagonal scheme provides similar numerical accuracy compared to that of the Fourier smoothing
method. It also appears that when compared to the Fourier smoothing method, the solutions generated by
filtering in the time domain converge (with increasing NH) to the true solution at a slower rate. This is more
than likely due to the finite order of the temporal filters. Including more stencil points minimizes this effect.

6. Computational economy

In this section, the computational economy of each filtering method is compared. The ultimate goal is to
select the filter that provides the best accuracy per unit computation time. It can be shown that the majority of
the expense in the HDHB methodology is consumed by solving the nonlinear system of algebraic equations in
Eq. (11). In this study we have solved the system using a Newton–Raphson method. The same sort of
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computational economy analysis presented here could be performed for other solution methods such as
pseudo-time-marching.

Typically, several Newton–Raphson iterations are required to converge to the solution. Each filtering
technique requires a certain number of floating point operations (FLOPs) per iteration (FPI). For simplicity, it
is assumed that each filtering technique requires the same number of iterations to converge to the solution. In
addition, any computational cost outside the Newton–Raphson procedure is neglected. These are inexact, yet
reasonable assumptions that allow for the direct comparison of the accuracy provided by each filtering
technique as a function of FPI. The number of FPIs required to solve the HDHB system by the
Newton–Raphson method for each filtering technique can be approximated by

FPI � l3N3
T þ l2N2

T þ l1NT . (22)

where the coefficients ln are determined for each filtering technique. When NT is large, l3 dominates, while l2
and l1 become less significant. The coefficients for the various filtering methods are presented in Table 2.
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Note in Table 2 that temporal filtering only increases l2 and l1, while frequency filtering also increases l3.
At the low-end stencil limit of the temporal methods, i.e. NH ¼ 3 and NT ¼ 7, frequency filtering is more
expensive in terms of FPI than the explicit and implicit tridiagonal schemes, but less expensive than the
implicit pentadiagonal scheme. When the number of harmonics used for computation is greater than or equal
to four, i.e. NHX4 and NTX9, frequency filtering becomes far more expensive than any temporal filtering
scheme.

Computational economy implies minimizing the number of FPIs required to produce a given displacement
error. The economy for the various filtering methods can be compared by combining the results of Eq. (22),
Table 2 and Fig. 10. In Fig. 13, the percent displacement error of the peak amplitudes for each filtering method
is shown as a function of FPI.

From Fig. 13, the seven point temporal filtering schemes provide the best computational economy when a
moderate number of harmonics are retained. Compared to the Fourier smoothing method, the explicit scheme
is more economical for NHp5, the implicit tridiagonal scheme is more economical for NHp7, and the implicit
pentadiagonal scheme is more economical for NHp10. Within the range of 4pNHp10, the seven point
temporal implicit pentadiagonal scheme provides the best overall computational economy while sufficiently
decreasing the occurrence of spurious solutions. For large values of NH, the computational economy of the
temporal filtering schemes can be further improved by increasing the stencil size.
Table 2

Approximate FPI coefficients for the various filtering methods.

Filtering method l3 l2 l1

Unfiltered 18 60 23

One-half rule 50 84 27

Fourier smoothing 50 84 27

Temporal explicit (7pt) 18 116 51

Temporal implicit tridiagonal (7pt) 18 172 79

Temporal implicit pentadiagonal (7pt) 18 308 147
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Fig. 13. Computational economy comparison for the temporal and frequency domain filtering schemes. Explicit temporal scheme

(diamond); implicit tridiagonal temporal scheme (triangle up); implicit pentadiagonal temporal scheme (triangle down); frequency domain

Fourier smoothing (square); unfiltered (circle).
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7. Conclusions

Using a Duffing oscillator as a prototypical nonlinear dynamical system, it is demonstrated that aliasing
terms in the HDHB method arise due to the treatment of nonlinearities in the system and result in numerical
instability. It is shown that the aliasing terms can be completely removed, or sufficiently reduced, through
application of low-pass filtering techniques in the frequency domain. The sharp-cutoff frequency domain filter
based upon the one-half rule completely removes the aliasing terms, but results in poor harmonic
approximation error. The Fourier smoothing frequency domain filter sufficiently reduces the occurrence of
aliasing terms while retaining a greater portion of wavenumbers, thus providing a better approximation to the
true solution. The drawback to filtering in the frequency domain is that coordinate transformations between
the time and frequency domains are required, which result in unnecessary computational expense. Filtering in
the frequency domain is particularly expensive for higher dimensional systems such as those encountered in
computational fluid and structural dynamics. As an alternative, temporal filters based on a Padé type compact
finite difference scheme with spectral-like resolution are designed to replicate the performance of the Fourier
smoothing filter. Three temporal filtering schemes (explicit, implicit tridiagonal and implicit pentadiagonal)
are constructed on a seven-point stencil. Monte Carlo simulations demonstrate that the temporal filtering
schemes and the Fourier smoothing method decrease the number of spurious solutions yielded by the HDHB
system and increase the probability of converging to a physical solution. The peak displacement errors
yielded by the temporal filtering schemes and the Fourier smoothing method compare favorably, with the
implicit pentadiagonal scheme giving the closest representation. When computational expense in terms of
FLOPs for a given solution error is considered, the temporal filters outperform the Fourier smoothing
method. Of the three temporal filters, the implicit pentadiagonal scheme provides the best overall
computational economy.

The temporal and frequency filtering techniques for the HDHB solution of a Duffing oscillator presented in
this study may serve as a framework for solving more complex nonlinear dynamical systems, including those
encountered in large scale computational fluid and structural dynamics.
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